Let
\[ q = [\,q_L,\, q_F\,]\]
be generalized coordinates for leader and follower (e.g., torso yaw, sway, COM height, foot angles). 'Losses' include friction, push-pull between the dancers, conflicting travel vectors (Tvec).
\[ \mathcal{L}(q,\dot q) = T_L + T_F - \Big(V_g^{(L)} + V_g^{(F)} + V_e^{(L)} + V_e^{(F)}\Big) - V_{\text{couple}}(q).\]
\[ \mathcal{D}(q,\dot q) = \tfrac12\,c_{\text{floor}}\|\dot x_{\text{foot}}\|^2 + \tfrac12\,c_{\text{tone}}\|\dot\theta_{\text{frame}}\|^2 + \tfrac12\,c_{\text{drag}}\|\dot x_{\text{body}}\|^2 + \tfrac12\,c_{\text{couple}}\|\dot\Delta_{\text{handhold}}\|^2.\]
Think: foot friction, internal viscosity, over-tone, partner drag - all pure cost, pure energy loss.
Enforce handhold distance/orientation with
\[ C(q,t)=0,\]
entering via multipliers \($\lambda$\) (or by using \(V<sub>couple</sub>\) and/or a velocity penalty in \($\mathcal{D}$\)).
\[ \frac{d}{dt}\!\left(\frac{\partial \mathcal{L}}{\partial \dot q}\right) - \frac{\partial \mathcal{L}}{\partial q} + \frac{\partial \mathcal{D}}{\partial \dot q} = Q_{\text{ext}} + J^\top \lambda.\]
See also: